
 
 

1 
 
 

 
On the measurement of relational responding 

 
Accepted for publication at the Journal of Contextual Behavioral Science 

 
Jamie Cummins 

 
Psychologists increasingly recognize the importance of relational responding in understanding 
human behavior. As a result, there is the growing need for good measures of relational 
responding. One promising measure is the Relational Abilities Index (RAI). However, its 
measurement properties have not been explored in-depth. There is little understanding, for 
example, of how precise the RAI is as a measure of individual-level abilities. In this paper I 
examine this and other measurement properties of the RAI and assess its suitability as a 
measure of relational responding at both the individual- and group-level. Although broadly 
promising, the measure exhibits several substantial shortcomings which limit its utility and 
interpretability. I make recommendations for how to improve the measure and highlight the 
importance of in-depth examinations of measurement for future research. 
 
 

A quiet “relational revolution” has begun to sweep 
across psychological science. Across fields, researchers 
are converging on a critical idea: that the cornerstone of 
human language and cognition is our ability to relate 
stimuli in arbitrary and complex ways (McLoughlin et 
al., 2020). This convergence has happened for good 
reason: relational responding has been implicated in a 
varied array of phenomena, including (but certainly not 
limited to) academic performance (Alexander et al., 
2016), perspective-taking (Montoya-Rodríguez et al., 
2017), and psychopathology (Hayes et al., 2021). In 
behavior analysis, the primary approach that advocates 
for this relational view is Relational Frame Theory 
(RFT; Hayes et al., 2001). RFT states that the ability 
to relate stimuli in arbitrary and complex ways can be 
considered an operant response class, typically referred 
to as arbitrarily applicable relational responding 
(AARR; Hayes et al., 2021). This perspective is unique 
to RFT: most theoretical accounts from other fields tend 
to conceptualize relational responding as a mental 
mechanism, rather than as an operant behavior 
(McLoughlin et al., 2020). Importantly, conceiving of 
relational responding as an operant comes with the 
necessary implications that relational responding should 
be subject to environmental control, and that fluency in 
relational responding should be trainable through 
multiple exemplar training (Cassidy et al., 2010).  

Both implications are well-supported. On the one 
hand, research has shown that relational responding can 
be brought under operant control, both in terms of the 
specific types of relational responses that people emit 
(i.e., Crel control; Hughes et al., 2019; Perez et al., 2017) 
as well as the specific properties of stimuli which people 
relate (i.e., Cfunc control; Delabie et al., 2022; Finn & 
De Houwer, 2021). On the other hand, there are now 
many studies which demonstrate that relational 
responding fluency can be trained directly (Cassidy et 

al., 2016; Colbert et al., 2018; Dixon et al., 2017; 
McLoughlin et al., 2021). Two “relational training” 
protocols have been developed within behavior analysis 
which are explicitly derived from this operant view of 
relational responding: SMART (Strengthening Mental 
Abilities with Relational Training; Cassidy et al., 2011) 
and the PEAK relational training system (Dixon et al., 
2017). Both SMART and PEAK have shown efficacy at 
improving relational responding abilities (Beck et al., 
2023; Dixon et al., 2021; May et al., 2022). As well as 
this, there is growing evidence that these training 
programmes may also lead to improvements on other 
outcomes such as IQ and educational attainment, which 
serves to further support the idea of relational 
responding as foundational in human cognition (e.g., 
Hayes & Stewart, 2016; but see May et al., 2022; Thirus 
et al., 2016).  

In tandem with the “relational revolution”, another 
revolution has begun to stir within psychological science: 
a revolution of measurement. It has become increasingly 
clear that psychological science has at times been lax in 
evaluating the validity of its measurement procedures. 
Indeed, there is now substantial evidence that the 
validity of psychological measures has been selectively 
reported (Hussey & Hughes, 2020), and that many 
measurement procedures used in psychological science 
are either (i) not measuring what they claim to measure, 
or (ii) are measuring what they claim to measure in a 
rather imprecise manner (Flake & Fried, 2020; Lilienfeld 
& Strother, 2020). This is problematic; we cannot 
produce good or useful theories in the absence of reliable 
and accurate measurement (Eronen & Bringmann, 2021). 
Given the recent Association for Contextual Behavioral 
Science Task Force report which emphasized the need 
for more precise measurement (particularly at the 
individual level; Hayes et al., 2021), this issue is now 
more relevant than ever.  
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With all the above said, it is worthwhile to inquire 
into the integrity of measures of relational responding. 
One popular measure for this purpose is the Relational 
Abilities Index (RAI; Colbert et al., 2017). The RAI is a 
repeatable assessment battery which tests participants’ 
abilities in different types of relational responding. The 
number of relations which are assessed in the measure 
has increased over time. Originally, only 2 relations were 
assessed (opposition and quantity; Colbert et al., 2017); 
subsequently, a 5-relation version was developed 
(assessing opposition, quantity, difference, temporality, 
and analogy; Colbert et al., 2019). Most recently, an 8-
relation version has been used (assessing the 5 relations 
from the 5-relation version as well as hierarchy, deictic, 
and mathematical relations; Cummins et al., 2022). Each 
relation is assessed across a series of trials where yes/no 
answers are required. Participants are presented with a 
series of premises (e.g., A is the same as B, B is the same 
as C), and a question relating to these premises (e.g., is 
A the same as C?). As participants progress in each 
subscale, the subscale’s trials increase in terms of the 
number of premises involved, the number of required 
derivations to answer correctly, and several other criteria 
which RFT predicts should require more “complex” 
relational responding (Hayes et al., 2001).  

In a recent examination of the task, Cummins and 
colleagues (2022) investigated both the split-half and 1-
week test-retest reliability of the measure. Although the 
full RAI score exhibited excellent psychometrics, the 
subscales of the measure fared differently: split-half 
reliability varied from adequate to poor, whereas test-
retest reliability was generally poor. Colbert et al. (2017) 
did not report subscale-level psychometrics but found 
similarly that the overall test-retest of the RAI was 
adequate. In a different vein, Ruiz Méndez and 
colleagues (2022) recently used a 4-relation RAI to 
examine whether the overall number of errors in trials in 
each subscale increased as the task progressed, as would 
be predicted based on an RFT perspective on the task 
(Cassidy et al., 2016; Colbert et al., 2017). The results 
were mixed; two subscales exhibited this expected 
pattern, whereas two did not.  

The low reliability of the RAI subscales should be 
particularly concerning for Contextual Behavioral 
Science (CBS) researchers, given that the precision of 
individual-level scores (i.e., the scores of specific single 
individuals) in a measurement procedure is a direct 
function of its reliability (Dudek, 1979). In other words: 
if the reliability of a subscale is poor, then a given 
participant’s score will not tell us much about their 
fluency in the probed relational response class. Although 
metrics for individual-level precision of scores in such 
tasks are not currently used often within CBS (or in 
psychology more generally), such metrics do exist. For 
example, statistical approaches such as the standard 
error of measurement (Dudek, 1979), the rescaled 
estimates of true scores (RETS; Schmukle, 2023), and 
bootstrapping (Mooney et al., 1993) can all be used to 
quantify the (im)precision of a measurement procedure 

at the individual-level; see for example Hussey's (2020) 
application of bootstrapping in the Implicit Relational 
Assessment Procedure, and Cummins and Hussey (2023). 

This paper has several research questions (RQs) 
which will be addressed by different analyses (these RQs 
are detailed specifically in the Analytic Strategy section 
below). First, I aimed to further investigate the 
psychometric properties of the RAI. I estimated the 
individual-level precision of RAI scores, as well as the 
implications that the current levels of precision have for 
the relative discriminability of RAI subscale scores 
(RQ1). Thereafter, I also examined the potential impact 
that increasing the number of trials in RAI may have on 
this precision (RQ2). I then conduct similar analyses 
relating to the split-half reliability of the measure (RQ3 
& RQ4). Finally, I used Item Response Theory (IRT) to 
investigate a core assumption of the measure: namely, 
that the complexity (and by extension, difficulty) of 
items within each subscale increases as items progress 
(RQ5; Cassidy et al., 2016). Together, these 
investigations aim to identify whether RAI in its current 
form is suitable for the goals of relational responding 
researchers, and if not, to identify the ways in which it 
is suboptimal.   

 
Method 

Sample 
All data, processing code, and analysis code are 

openly available via the Open Science Framework 
(https://osf.io/rqav2/?view_only=18200a40711040fb8a
d34d99ab9fb27a). The data used in this study consist of 
both human and simulated observations, analyzed 
separately. The human observations are derived from 
published and unpublished data. Specifically, RAI data 
are taken from the time 1 assessments in Experiment 2 
of Cummins et al. (2023) and data from unpublished 
studies using the 8-relation RAI. These data were only 
used if the RAI was the first measure participants 
completed and if participants were typically developed 
adults between 18 and 40 years old. In total, the human 
data consist of 264 participants (116 men, 147 women, 1 
non-binary) with a mean age of 28.86 years (SD = 5.87 
years). These participants were recruited either via 
Prolific Academic or word-of-mouth. The simulated 
observations were produced based on the density 
distribution of the scores for the human observations. 
Firstly, I extracted the kernel density function for each 
separate subscale of the human RAI data using the 
bkde() function from the KernSmooth R package (Wand, 
2021). Kernel density estimation in essence is a method 
which allows for the relatively precise approximation of 
complex distributions, which in turn can then be used to 
simulate new observations from the approximated 
distribution (Chen, 2017). I simulated 1000 new 
observations of scores for each of these subscales based 
on this density distribution, bounding observations 
between 0 and 1 (1000 was chosen to provide a sufficient 
range of observations while also limiting the 
computational complexity of the to-be-run models). The 
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distributions of the human and simulated data can be 
inspected in Figure 1. 

 
Figure 1. Density distributions of the (i) real and (ii) 
simulated RAI subscale data. 
 
Materials 

Relational Abilities Index (RAI). Detailed 
information regarding the RAI procedure can be found 
in Colbert et al. (2019). In short, the RAI in all data 
sources was identical to that used within Cummins et al. 
(2022), consisting of 8 relational subscales divided into 
16 trials each. Each trial required a binary yes/no 
response to a relational question based on a set of 
relational premises. Trials in each subscale are stated to 
scale up increasingly in difficulty as trials increase, by 
varying the number of relational premises, the number 
of derivations required to be made by the participant in 
answering the question, and other similar dimensions. 
Figure 1 illustrates examples of trials from each of the 8 
subscales.  
Analytic strategy 
Analytic methods  

Given that some of the analytic methods employed 
in the manuscript may be novel to readers, in this section 
I provide an overview of these methods, broadly explain 
their logic and background, and clarify the way in which 
they are useful for the purposes of this paper.  
Individual-level estimation of scores. When we 
compute scores in a measure, there is always uncertainty 
associated with these scores, and this uncertainty 
decreases as our number of measurements increase. If a 
coin is flipped 100 times and 70% of the results are heads, 
we can be much more confident that the coin is unfair 
than if the coin showed 70% heads after only 10 flips. 
We are used to employing this logic when it comes to 
the measurement of a group of participants: we increase 
our sample size to improve the precision of our 
measurement, and we estimate the precision of that 
measurement by examining the width of (e.g.) 95% 
confidence intervals (CIs). We also then use these 
confidence intervals to make inferences; in general, in a 
two-sided statistical test with an alpha level of 0.05, if 
the 95% CI excludes zero then the associated p-value will 
be less than 0.05 (Knol et al., 2011).  

 

 
 
Figure 2. Example trials from each of the 8 subscales of 
the RAI. Reading from left to right and top to bottom, 
the represented subscales are: opposition, difference, 
quantity, temporal, containment, analogy, deictic, and 
mathematical relations. 

 
In the context of individual-level measurement, we 

surprisingly rarely compute the confidence intervals 
associated with individual persons’ scores. However, just 
like with group-level analyses, there is necessarily 
uncertainty associated with these scores, and estimating 
this uncertainty can provide us with insight into how 
meaningful individual persons’ scores are. To address 
RQ1 and RQ2, it was therefore necessary to first identify 
a method for extracting individual-level confidence 
intervals on the RAI data. Critically, scores in the RAI 
follow a very distinct distribution: namely, responses in 
each trial can either be correct (i.e., a success) or wrong 
(i.e., a failure). As such, the RAI can be conceptualized 
as a series of Bernoulli trials which form a binomial 
distribution; the sum score which is computed for the 
RAI or its individual subscales can be considered the 
“success” parameter of the binomial distribution for a 
given participant (this renders this score quite similar to 
the mean number of heads/tails in the context of coin-
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flipping). Confidence intervals on this binomial 
distribution can then be trivially computed using 
Clopper & Pearson's (1934) method; computing 
confidence intervals from the binomial distribution is a 
highly conventional method, akin to the familiarity of 
computing standard deviation or z-scores based on the 
Gaussian distribution (Edwards, 1960).  

It is worth noting that it is likely not accurate to 
conceive of the RAI in terms of the binomial distribution. 
The binomial distribution assumes both independence 
between trials and an identical probability of success on 
all trials. These assumptions are violated in how the RAI 
is conceived; minimally, there is an assumption that later 
trials have a lower probability of success than earlier 
trials. However, there is a discrepancy between this 
conceptualization of the RAI and its use of sum 
scores/averages as its score. The use of sum scores or 
averages (as has been done exclusively with the RAI to 
date) also does not account for dependencies between 
trials, nor differences in the relative probabilities of 
success across different trials (cf. McNeish & Wolf, 2020). 
As such, the use of the binomial distribution here to 
quantify confidence intervals does not mean to imply 
that the assumptions of the binomial hold; rather, it is 
simply a reflection of the assumptions that are already 
baked into the use of the sum score and its derivatives.
  

Item Response Theory. The modal set of methods 
used to investigate the psychometric properties of 
psychological tasks can be broadly referred to as 
Classical Test Theory (CTT). CTT in general focuses on 
the overall scores which are produced in each test, 
estimating (for example) how stable these scores are 
across time (test-retest reliability) or when sampling 
from different test items (e.g., split-half reliability). CTT 
(in its most fundamental form) assumes that all items in 
the examined measure contribute equally to the total 
test score (Wang & Osterlind, 2013), and approaches to 
item development are typically done with respect to how 
adding/dropping items affects the overall test score (e.g., 
does dropping a certain item increase reliability; Raykov, 
2008). Although CTT is clearly useful, it does not 
concern itself with the properties of items within the test 
themselves. In contrast, Item Response Theory (IRT; 
Embretson & Reise, 2013) is fundamentally concerned 
with the nature and characteristics of specific items, 
particularly as they pertain to the latent ability Q that 
the scale seeks to assess. In the case of the RAI, this 
latent ability can be conceptualized as relational 
responding to a particular type of relation (i.e., 
depending on the subscale). IRT, then, can allow us to 
determine how specific trials in each subscale relate to 
this latent ability.  

In the RAI, there is an assumption that later trials 
in a given subscale are in general more difficult than 
earlier trials due to their greater relational complexity 
(Cassidy et al., 2016; Colbert et al., 2017). Models in 
IRT can allow us to address this question by determining 
the difficulty of items in each subscale of the RAI 

inductively. IRT consists of a range of models which vary 
in terms of their complexity. The simplest of these is the 
dichotomous 1-parameter logistic model (1-PL model; 
Rasch, 1960). In short, this model assumes that all 
features of all items in a scale are identical, except for a 
single element: the difficulty of the item. Given these 
assumptions, the 1-PL model estimates Item 
Characteristic Curves (ICCs), which illustrate the 
functional relationship between the probability of a 
correct response on the given item and the latent trait 
being assessed. The point on the “ability” axis at which 
this curve is most steep represents the “difficulty” of the 
item, which is also referred to as the location parameter 
(Lord, 2012). Items which are more difficult have a 
higher location parameter value, whereas items which 
are easier have lower location parameter values.  

The 1-PL model can also be used to estimate Test 
Characteristic Curves (TCCs) and Test Information 
Curves (TIC) for the entire scale(s) of interest 
(Embretson & Reise, 2013). The TCC simply represents 
the sum of the ICCs for each subscale item weighted by 
the score for each item. This provides an overview of the 
relationship between the overall subscale score and the 
ability level of participants. The TIC is, in essence, a 
plot which visualizes the measurement error in the scale 
associated with different levels of the latent ability being 
assessed (this contrasts with CTT, which assumes that 
measurement error is uniformly distributed; Wang & 
Osterlind, 2013). Lower levels of information are 
associated with higher degrees of measurement error. For 
this paper, both the ICC and TIC can provide valuable 
information about the subscales of the RAI. 

Some readers will already note that the assumptions 
of the 1-PL model align well with those of the RAI. 
Indeed, other IRT models which could be selected (e.g., 
the 2-PL model) make additional assumptions which 
have not been explicitly stated in the context of the RAI. 
For example, the discriminability of items can be allowed 
in addition to the difficulty of items, which would mean 
that some items could be better at distinguishing 
between participants of different abilities than others. In 
such a case, the associated curves for each item could 
vary not only in terms of their location in the plot, but 
also in terms of the shapes of each item curve. Although 
IRT analyses would typically conduct a comparison of 
these various models and choose the best-fitting 
candidate for further analysis, the analytic approach 
here seeks to test the extant theoretical claims relating 
to the RAI, not to identify the best fitting IRT model 
for the data. As such, I opted to use the 1-PL and not 
compare different IRT configurations (although future 
work aimed at further developing the RAI could greatly 
benefit from doing this). It should be noted, however, 
that I did not fix the discriminability between subscales; 
as a consequence, the shapes of the ICCs were identical 
within subscales, but differed between subscales. 
Research questions  

RQ1. How precise is the existing RAI at the 
individual-level? The analytic approach used across all 
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sub-questions for RQ1 is directly inspired by (and near-
identical to) the method employed by Hussey (2020). 

RQ1.1. What is the average CI width for 
participants across subscales? This first research 
question aimed to get at the simple idea of how wide, on 
average, the confidence intervals of human participants 
were. This can provide a sense of the precision of the 
subscale in general. I addressed this question using a 
multilevel linear model (see Bates et al., 2015), with CI 
width modelled as the dependent variable, subscale 
modelled as a predictor, and study id and participant id 
modelled as random intercepts. The Wilkinson notation 
of this model was as follows: 
CI Width ~ 1 + subscale + (1 | study id / participant 

id) 
 I then used a likelihood ratio test to compare 
this model with a model identical to this but without 
subscale included as a predictor (i.e., to assess whether 
the RAI subscale had a meaningful impact on CI width). 
The mean CI width for each subscale was then estimated 
based on the marginal means for each subscale.  

RQ1.2. What proportion of participants’ 
scores exclude the possibility of random 
responding across subscales? This question 
investigated the proportion of participants in each 
subscale whose scores were significantly greater than 
chance level. A similar strategy was used here as in 
RQ1.1, but using a multilevel logistic model (rather than 
linear model), with significance (TRUE or FALSE) used 
as the dependent variable. Significance was determined 
based on whether the estimated confidence intervals for 
each participant excluded 0.5 (given that the nonoverlap 
of confidence intervals with a point estimate value is 
equivalent to a slightly more conservative one-sample t-
test; Knol et al., 2011). The predictor and random effects 
were identical to those of RQ1.1. Specifically: 
Discriminable from chance ~ 1 + subscale + (1 | study 

id / participant id) 
As before, a likelihood ratio test was used to 

determine whether discriminability from chance was 
predicted significantly better by factoring in the subscale, 
and the mean proportion of discriminability from chance 
for each subscale were estimated based on the marginal 
mean predictions from the model.   

RQ1.3. What proportion of participants’ 
scores are discriminable from one another 
across subscales? Not being differentiable from 
chance-level responding is not in-and-of-itself an 
indicator of measure quality. For example, it might be 
the case that difference responding is generally less 
complex than analogical responding; greater chance-level 
responding would therefore necessarily be expected for 
analogical responding compared to difference (indeed, 
different relational responses being differentially 
complex is perfectly in line with RFT; Hayes et al., 2001). 
What can be more informative is how well the measure 
serves to discriminate between individuals. This is 
precisely the motivation behind RQ1.3. To address this, 
within each subscale each participant’s score was 

compared with every other participant’s score. 
Participants were registered as being significantly 
different from another participant in instances where 

|𝑥! − 𝑥"| > 1.96	 ×	+𝑆𝐸!" +	𝑆𝐸""	 

(1) 

where X1 is the first participant, X2 is the comparison 
participant, SE1 is equal to the standard error of the first 
participant’s score, and SE2 is equal to the standard 
error the second participant’s score. This method of 
comparison is more accurate to detect true differences 
between observations than merely comparing the 
(non-)overlap of confidence intervals (see Austin & Hux, 
2002; Cornell Statistical Consulting Unit, 2008; Tan & 
Tan, 2010). The individual-level SEs were derived from 
the basic formula 

𝑆𝐸 =
(𝐶𝐼#$$%& −	𝐶𝐼'()%&)

(1.96 ∗ 2)  

(1) 

After comparing each participant, the observations were 
entered into a multilevel logistic regression, with 
significant difference (TRUE or FALSE) entered as the 
dependent variable. The predictors and random effects 
were otherwise identical to RQ1.1 and RQ1.2. 
Specifically: 
Discriminable from other participant ~ 1 + subscale + 

(1 | study id / participant id) 
 Once again, a likelihood ratio test was run to 
compare this model to one which excluded subscale as a 
predictor, and estimated marginal means were used to 
identify the mean proportion of discriminability from 
other participants.  

RQ2. How would increasing trial lengths affect 
the RAI’s individual-level precision? RQ1 focuses on 
evaluating the individual-level precision of the RAI 
along three dimensions. Individual-level precision is 
essentially a form of estimation; as we know from 
estimation at the group-level, increasing sample size can 
improve estimates of models. By extension, if we increase 
our sample size within each participant (i.e., the number 
of trials completed in the RAI), then the individual-level 
precision of the measure should improve. RQ2’s analyses 
therefore echoed those of RQ1 but investigated the levels 
of individual-level precision that would be achieved at 
varying trial lengths using a simulation-based approach, 
simulating data for 1000 observations as described in the 
Sample section above. Confidence intervals for the 
simulated scores were subsequently estimated assuming 
varying numbers of trials: ranging from 16 to 256 trials 
in steps of 16.  

RQ2.1. How do average CI widths change 
as a function of trial length across subscales? 
This research question focused on estimating how 
average CI widths varied as a function of the number of 
trials used in the task. This was achieved arithmetically, 
since given a proportion correct and number of trials the 
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confidence intervals of the binomial distribution can be 
computed trivially without the need for simulation 
(Clopper & Pearson, 1934). However, it is important to 
note that this tells us little about the average CI widths 
across subscales, given that subscales’ scores were not 
uniformly distributed, and they may not be identically 
distributed between subscales. Therefore, I investigated 
this question while also modelling this between-subscale 
variability in the simulated data. The model used for 
this question was broadly the same as in RQ1.1, with 
the addition of number of trials as an added predictor as 
well as its interaction with subscale, and the removal of 
study id as a random effect. The Wilkinson notation for 
this model is: 

CI Width ~ 1 + n_trials + subscale + 
n_trials:subscale + (1 | participant id) 

 A likelihood ratio test was used to compare this 
model to one which did not factor in the number of trials 
into its predictions, and the interaction between number 
of trials and subscale was both verified statistically and 
presented visually.  

RQ2.2. How does discriminability from 
random responding change with increasing trial 
lengths? This question investigated the rate of 
discriminability of participants from chance-level 
responding as a function of increasing trial lengths. 
RQ2.2’s model therefore paralleled that of RQ1.2’s, but 
with the addition of number of trials as an added 
predictor variable, as well as its interaction with subscale. 
In other words: 
Discriminable from chance ~ 1 + n_trials + subscale 

+ n_trials:subscale + (1 | participant id) 
 A similar analytic approach to RQ2.1 
(likelihood ratio test, test of main and interaction effects, 
and visualization of relationship) was used.  

RQ2.3. How does discriminability from 
other participants change with increasing trial 
lengths? This question investigated the rate of 
discriminability of participants from other participants 
as a function of increasing trial lengths. Like the previous 
two analyses in RQ2, I had initially planned to model 
the number of trials, and its interaction with subscale, 
as additional predictors to its counterpart model from 
RQ1.3. Specifically: 
Discriminable from other participant ~ 1 + n_trials + 

subscale + n_trials:subscale + (1 | study id / 
participant id) 

Critically, however, the number of possible comparisons 
between each participant on each trial-type at each 
number of trials was extremely large (with 1000 
participants, 8 trial-types, and 16 different numbers of 
trials yielding approximately 128,000,000 comparisons). 
Running this model would have taken quite some time. 
As a more computationally manageable alternative, I 
instead switched to the use of a fixed-effects linear 
regression model. Specifically, I computed a 
“discriminability score” for each participant at each 
number of trials and for each subscale (i.e., a value 
between 0 and 1 indicating the proportion of 

participants which could be discriminated from the 
present participant). A score of 1 indicated that this 
participant was discriminable from all other participants, 
whereas a score of 0.5 indicated that this participant was 
discriminable from exactly half of all other observations. 
Although nonlinear regression methods such as beta 
regression would generally be more appropriate for 
modelling such proportion data, I opted for a simpler 
linear model due to the relative ease of interpretation of 
linear model coefficients, which will aid in future 
decision-making for RAI researchers. This regression can 
be specified as: 

Discriminability score ~ 1 + n_trials + subscale + 
n_trials:subscale 

I then examined whether each of the terms in the model 
were significant predictors of discriminability, and 
plotted the estimated marginal predictions for each 
subscale across the number of trials.  

RQ3. What is the split-half reliability of the 
existing RAI across subscales? This research question 
is relatively straightforward and simply consisted of 
examining the split-half reliability of the RAI, which has 
not been reported extensively to date. 

RQ4. How does the split-half reliability of the RAI 
change across subscales with increasing trial lengths? 
This research question was similar to RQ3, but used the 
Spearman-Brown prophecy formula to project the split-
half reliability of each RAI subscale for various trial 
lengths (Brown, 1910; Spearman, 1910). 

RQ5. Do items in each RAI subscale align with 
the theoretical expectations of RFT? The ordering of 
scale items in the subscales of the RAI is not random. 
Scale items within subscales are assumed to follow a 
general increase in difficulty as blocks progress (Cassidy 
et al., 2016; Colbert et al., 2017). The most extreme 
constraint of this assumption would be one where, in 
every instance, Trial N would be more difficult than 
Trial N-1, which would be more difficult than Trial N-2, 
and so on. The psychometric term for such an 
arrangement of trials is a Guttman scale. Methods from 
both Classic Test Theory (CTT) and Item Response 
Theory (IRT) can be used to assess this. From CTT, we 
can examine the proportion of Guttman errors for each 
subscale (i.e., instances where a correct response on Trial 
N was immediately preceded by an incorrect response on 
Trial N-1; Meijer, 1994). Although users and developers 
of the RAI have not explicitly stated that the RAI ought 
to strictly conform to a Guttman structure, it is still 
useful to examine these results in the context of what 
has been explicitly stated (namely, that trials in general 
should be more difficult as the task progresses). Though 
we might expect a greater number of violations/errors 
under this less strict assumption, we should still broadly 
expect a relatively low number. 

After this, I also examined the difficulty of items in 
each subscale inductively using IRT. I firstly fit 1-PL 
models to each of the 8 RAI subscales separately. Next, 
for each item in each subscale I extracted the difficulty 
(aka location) coefficients estimated by the 1-PL models 
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and graphically examined the relative correspondence 
between the theoretically proposed difficulties and 
observed difficulties. I also plotted the associated ICCs 
for each subscale. I also plotted TICs for each subscale 
to examine the relative measurement error associated 
with the subscales at varying levels of participant ability. 

Results 
RQ1: The individual-level precision of the RAI in 
existing data 

For RQ1.1 (the mean precision at the individual-
level), in a likelihood ratio test the model including 
subscale as a predictor of mean CI width fit the data 
significantly better than a null model excluding this 
predictor, χ²(7) =761.45, p < .001. For the model itself, 
the subscale factor was dummy coded with the first 
subscale (i.e., opposition) of the RAI used as the 
reference category. The results of this model can be seen 
in Table 1. Although CI widths varied significantly 
between subscales, it is critical to note that these widths 
were generally range wide, with mean estimates across 
subscales ranging from .33 to .48. 
 
Table 1. Comparisons of mean individual-level CI width 
across RAI subscales. P-values for each subscale are 
relative to the reference category; the p-value for the 
reference category is compared to a null effect. 
 
Subscale Estimated marginal mean 

CI Width (95% CIs) 
p 

Opposition 
(reference) 

.48 (.44, .52) < .001 

Difference .33 (.29, .37) < .001 
Quantity .41 (.37, .46) < .001 
Temporal .42 (.38, .46) < .001 
Containment .43 (.39, .47) < .001 
Analogy .47 (.43, .51) = .520 
Deictic .45 (.41, .49) < .001 
Mathematical .46 (.42, .50) = .002 

 
For RQ1.2 (the mean discriminability from zero), 

comparing the model which included subscale as a 
predictor to the model without subscale as a predictor, 
the subscale-included model once again fit the data 
better, χ²(7) = 604.35, p < .001. Overall, 
discriminability from chance differed significantly 
between subscales, p < .001. The specific estimated 
marginal proportions for each subscale can be found in 
Table 2. The performances of the subscales varied widely, 
but generally were not desirable: except for the 
difference subscale, less than 50% of participants on a 
given subscale could be successfully discriminated from 
chance responding. 
 
Table 2. Comparisons of discriminability from chance of 
individual scores across RAI subscales. P-values for each 
subscale are relative to the reference category; the p-
value for the reference category is compared to a null 
effect. 

 
Subscale Estimated proportion 

of participants 
discriminable from 
chance responding 
(95% CIs) 

p 

Opposition 
(reference) 

.02 (.01, .05) < .001 

Difference .85 (.72, .93) < .001 
Quantity .38 (.22, .57) < .001 
Temporal .32 (.18, .51) < .001 
Containment .26 (.14, .43) < .001 
Analogy .01 (.01, .03) = .372 
Deictic .12 (.06, .24) < .001 
Mathematical .09 (.04, .17) < .001 

 
For RQ1.3 (the mean discriminability from other 

participants), once more the model with subscale as a 
predictor was a better fit than the intercept-only model, 
χ²(7) = 37669, p < .001. The specific predictions and 
estimated marginal means can be found in Table 3. Once 
again, however, discriminability was not optimal, 
ranging from ~6% (in the analogy subscale) to 33% (in 
the temporal subscale). In other words: even in the best 
performing subscale, a participant on average could only 
be discriminated from 33% of other participants. 
 
Table 3. Comparisons of discriminability from other 
participants across RAI subscales. P values for each 
subscale are relative to the reference category; the p-
value for the reference category is compared to a null 
effect. 

Subscale Estimated proportion of 
participants 
discriminable from each 
other (95% CIs) 

p 

Opposition 
(reference) 

.07 (.07, .08) < .001 

Difference .32 (.30, .33) < .001 
Quantity .29 (.28, .30) < .001 
Temporal .33 (.32, .35) < .001 
Containment .32 (.31, .33) < .001 
Analogy .07 (.06, .07) < .001 
Deictic .24 (.23, .25) < .001 
Mathematical .20 (.19, .21) < .001 

 
RQ2: Simulating differing trial lengths on the RAI’s 
individual-level precision 

RQ2.1 focused on estimating how average CI widths 
varied as a function of the number of trials used in the 
task. The simplest approach to answering this question 
would be to simply examine how CI widths vary as a 
function of increasing trial lengths and proportions of 
correct responses (i.e., the RAI subscale score). This 
general relationship can be seen in Figure 3. 
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Figure 3. The impact of increasing trial numbers on RAI 
subscale CI widths.  

 
However, modelling the simulated data directly can 

also reveal critical insights and account for heterogeneity 
between subscales. The model fitted to the simulated 
data fit the data significantly better than an equivalent 
model without number of trials included, χ²(8) = 109352, 
p < .001. The omnibus main effects and interaction 
effect were all significant, p < .001. The broad pattern 
of results can be seen in Figure 4. 

 
Figure 4. The change in CI width in the simulated data 
as a function of increasing trial lengths.  
 

For RQ2.2 (comparing discriminability from 
chance), the model including number of trials fit the data 
better than a model excluding this predictor, χ²(14) = 
6285.4, p < .001. The omnibus main effects and 
interaction effect were all significant, p < .001. On 
average across subscales, every 16 trials increased the 
proportion of participants discriminable from 0.5 by 
about .034. Figure 5 illustrates this. 

For RQ2.3, both the main terms and the 
interaction term in this model were significant predictors 
of the discriminability score (p < .001). Figure 6 
illustrates the estimated marginal predictions of 
discriminability for each subscale across increasing 
numbers of trials. 

 
Figure 5. The estimated marginal predictions for 
discriminability of RAI subscale scores from chance-level 
responding (i.e., a score of 0.5) as a function of increasing 
number of trials in the subscales. 
 

 
Figure 6. Estimated marginal predictions for the 
proportion of discriminability for each of the subscales 
across increasing numbers of trials. 
 
RQ3: Split-half reliability of the RAI subscales in 
existing data 

Split-half reliability of the RAI has generally not 
been reported frequently. Although split-half reliability 
for the RAI was previously computed by Cummins et al. 
(2022), a larger sample size naturally provides a better 
estimate. The Spearman-Brown corrected odd-even 
split-half scores for each of the 8 subscales can be found 
in Table 4.  
RQ4: Impact of subsequent trials on split-half 
reliability 

The Spearman-Brown prophecy formula can 
conveniently be used to estimate the impact of adding 
further trials on split-half reliability (Remmers & Ewart, 
1941). By extension, it can also be manipulated to solve 
for the number of trials required to achieve a particular 
level of reliability. Here, I firstly examined the impact 
doubling the number of trials would have on each 
subscale’s reliability. As well as this, I also examined 
how many trials would be required for each subscale 
separately to achieve specific criterion levels of split-half 
reliability (i.e., .80, .90, and .99). The results from these 
analyses are presented in Table 4. 
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Table 4. Estimated split-half reliabilities for each 
subscale, as well as prophesized requirements for various 
split-half related criteria.  

Scale Split-
half 

Split-
half if 

doubled 

Trials needed 
for… 

.8 .9 .99 
Opposition .45 .62 78 176 1963 
Difference .81 .90 15 34 372 
Quantity .67 .80 32 71 780 
Temporal .77 .87 19 43 473 
Containment .74 .85 22 51 557 
Analogy .35 .52 119 267 2942 
Deictic .54 .70 55 123 1349 

Mathematical .64 .78 36 81 891 
 
RQ5: Do item difficulties in each RAI subscale align 
with the theoretical expectations of RFT? 

I used a combination of approaches from CTT and 
IRT to examine whether the characteristics of the 
subscales and their items corresponded with the 
conceptual accounts of the RAI and RFT more generally 
(i.e., that more complex relational responding ought to 
entail more difficulty; Cassidy et al., 2016; S. C. Hayes 
et al., 2001). First, I examined the proportion of 
Guttman errors for each subscale (i.e., instances where 
a correct response on Trial N was immediately preceded 
by an incorrect response on Trial N-1). Table 5 provides 
results for the mean proportion of Guttman errors for 
each subscale; in general, these scales did not abide by a 
strict Guttman scale, and there were substantial 
proportions of Guttman errors that suggested that item 
difficulties did not scale in the manner expected.  
 
Table 5. Scale properties of each of the RAI subscales in 
terms of their adherence to a Guttman structure.   
Subscale Mean proportion of Guttman errors 

Opposition .81 
Difference .90 
Quantity .83 
Temporal .82 
Containment .81 
Analogy .79 
Deictic .80 
Mathematical .80 

 
These results strongly suggest that the difficulties 

of items in RAI subscales do not conform to a Guttman 
structure, and that there are structural violations even 
of the assumption that the trials in general increase in 
difficulty. This was also apparent when plotting the 
extracted item difficulties from the IRT models against 
the theoretically predicted difficulties of the items (i.e., 
their ordering within the task). Figure 7 illustrates these 
relationships. It is clear from these plots that item 
difficulty did not systematically increase across trials in 
the subscales; in fact, in many cases it appears that 

earlier trials proved more difficult than later trials (in 
line with the above findings relating to violations of 
Guttman structure).  
 

 
Figure 7. Comparisons of theoretically predicted trial 
difficulties (in the form of RAI trial number) against 
estimated difficulty from IRT models for each of the 8 
subscales.  
 

Examining the Item Characteristic Curves 
associated with each subscale revealed a further 
interesting pattern: in general, the difficulties associated 
with each item within each subscales were very similar. 
The two exceptions to this fact, the opposition and 
analogy subscales, demonstrate notably poorer 
discriminability (i.e., the slopes of their curves are 
substantially smaller) than the other 6 subscales. Figure 
8 displays the ICCs for each subscale.   
 

 
Figure 8. Item Information Curves for each of the RAI 
subscales. The vertical line corresponds to zero on the x-
axis, indicating an average ability participant. Darker 
colored lines indicate trials which are presented later in 
the RAI; in principle we should expect to see a clear 
gradient of light-to-dark as we move from left-to-right in 
the plot. 

Finally, I plotted Test Characteristic Curves 
(TCCs) and Test Information Curves (TICs) for each 
subscale. The ideal TIC for a scale would be a straight 
line which intercepts the y-axis at a large value, 
indicating the test is equally and highly informative at 
every level of participant ability. Typically, however, 
TICs are shaped as bell curves; in such cases, fatter tails 
and high peaks are desirable. Figure 9 plots the TCCs 



 
 

10 
 
 

for each subscale against one another; Figure 10 does the 
same for TICs. The TICs demonstrated that for all 
subscales, test information was highest (and therefore 
measurement error was lowest) for participants of below 
average ability. For participants of beyond average 
ability, the subscales’ informativeness quickly 
diminished. 
 

 
Figure 9. Test Characteristic Curves for each of the 8 
RAI subscales. 
 

 
Figure 10. Test Information Curves for each of the 8 
RAI subscales. 
 

Discussion 
Overview of results 

Good measurement is fundamental to good theory. 
For theory on relational responding, measures like the 
RAI are critical to advance our knowledge. The analyses 
above, however, suggest that the RAI has plenty of room 
for improvement. Perhaps the most critical finding is 
that the RAI subscales’ precision at the individual-level 
is deeply lacking. The median CI width for scores across 
subscales ranged between .33 and .48 (excessively wide 
for a scale with a range of 0 to 1). In terms of inter-
participant discriminability, a given participant was 
discriminable from, on average, 7-32% of other 
participants (depending on the subscale). This is a 
particularly critical issue for CBS, given the recent push 
for a more idiographic level of analysis (Hayes et al., 
2021). Fortunately, individual-level precision can be 

 
1  Data and processing/analysis scripts for this exploratory study can be found on the Open Science Framework; 
https://osf.io/vu9aw/?view_only=eb4ec2dd710e4ce686e6a8733868f07d. 

improved by adding further trials to the subscale being 
completed. Of course, participants cannot simply 
complete trials in a relational responding task ad 
infinitum. What would benefit further research, then, 
would be to clarify in advance which relations are of 
interest, and to assess those specific relations in greater 
depth. Indeed, Figures 4-6 provide a helpful illustration 
for future researchers on precisely how many trials would 
be needed for a given subscale to achieve a particular 
degree of individual-level performance.  

Beyond individual-level precision, the RAI 
subscales exhibited variation in their split-half reliability. 
Whereas the difference, temporal, and containment 
subscales performed rather well even with the current 16 
trial format, others such as analogy and opposition were 
very poor. Perhaps the biggest surprise is the poor 
performance of opposition, given that it is considered to 
be the basis for more complex types of relational 
responding (Mulhern, 2022). Notably, because 
opposition is the first subscale that is administered in 
the RAI, one explanation for this could be that 
participants are simply unfamiliar with the task 
environment during this initial subscale, leading to more 
inconsistency in their responding. I conducted a brief 
exploratory study to test this explanation, with 50 
participants completing the opposition subscale and then 
the difference subscale (i.e., as in the standard RAI), and 
50 participants completing the difference subscale and 
then the opposition subscale 1 . However, split-half 
reliability in the opposition subscale did not differ 
significantly between these conditions (and in fact was 
slightly worse when opposition was completed second). 
As with individual-level precision, a solution to improve 
split-half reliability once again resides in increasing the 
number of trials in the task; Table 4 provides a 
convenient guide for future research in this regard.  

Notably, violations of Guttman structure were 
observed very frequently across all subscales of the RAI. 
The subscales in general simply did not conform to their 
theoretically proposed structures. Looking further in 
terms of the fitted 1-PL models, all subscales except 
analogy and mathematical responding appeared to show 
a pattern where earlier trials were initially quite difficult, 
and then this difficulty sharply decreased in the middle 
stages of the subscales, with some increases towards the 
final few trials in some cases. At a more general level, 
the analogy and opposition subscales performed poorly 
in terms of their overall TCCs and TICs. The other six 
subscales were not ideal, providing limited information 
about individuals above average ability and generally 
being constrained to low levels of difficulty. The analogy 
and opposition subscales, however, simply provided little 
information at any level of participant ability.  
Implications and future research 

Beyond the need for increasing number of trials 
and a closer focus on Guttman structure, there are some 
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further recommendations for use of the RAI that follow 
from this work. In terms of individual-level precision, 
researchers should carefully consider exactly how precise 
they require the specific subscales of interest to be. One 
method to do this may be to adopt the logic of the 
“smallest effect size of interest” (SESOI) approach to 
power analysis and sample size planning (Anvari & 
Lakens, 2021). In other words, a researcher planning to 
use the RAI to make inferences about individual-level 
effects may specify a priori the number of participants 
they would ideally like a given participant to be 
detectably different from, the desired median CI width, 
the desired discriminability from zero, or some 
combination of these features. With these in mind, 
researchers can design an RAI which can provide them 
with the specificity they desire. What is clear, as has 
been iterated across recent psychological literature, is 
that we must reject a “one-size-fits-all” approach to 
measurement and cater measurement decisions to 
specific research questions (Cummins, Hussey, et al., 
2022; Flake et al., 2017). 

Although increasing the number of trials may 
improve the measurement properties of the RAI, it is 
somewhat of a “brute-force” solution to the problem. One 
potentially more elegant alternative would be to improve 
the trial items themselves. The IRT analyses above 
provide clues as to how this can be done. For several of 
the subscales, the ICCs demonstrate that the trials in 
these subscales are generally the same (low) level of 
difficulty. Consequently, these subscales provide limited 
information about higher-ability individuals. 
Development of these subscales could therefore focus on 
adding further trials of greater difficulty to improve the 
coverage of these subscales. One other simple way to do 
this would be to adjust the trials to include more than 
two response options (e.g., by requiring the 
discrimination of the correct stimulus to a question such 
as “which stimulus is the biggest?”). Currently, chance-
level responding will produce 50% correct responses in 
the task, which constrains both the overall range of 
possible scores to observe and the individual-level 
precision. By extending the number of possible responses, 
this would increase the variance of observed scores and 
improve the diagnosticity of the measure at the 
individual-level. Future work could also attempt to 
model guessing directly within the employed IRT models 
(San Martín et al., 2013). 

In this paper, I used IRT primarily to test specific 
proposed properties of the RAI (e.g., adherence to a 
Guttman structure). However, IRT can also be used in 
a more iterative manner to improve measures 
(Embretson & Reise, 2013). Future research should 
certainly do this, and any insights or improvements in 
the measure may also have implications for the 
advancement of RFT. It should be noted that the 
strategies employed to date to implement incremental 
difficulty across trials in the RAI were derived from 
assumptions within RFT: namely, that additional 
derivations, a greater number of reversals of relations, 

etc. should be more difficult for participants (Cassidy et 
al., 2016; Colbert et al., 2017; Hayes et al., 2001). Given 
that these factors appeared to have little impact on the 
difficulty of RAI trials, these results signal the necessity 
to empirically assess the theoretical assumptions that are 
baked into such tasks.   

Of course, there may be many reasons why these 
results were observed. One potential explanation could 
relate to the ordering of trials in the RAI. In most of the 
subscales, there was a clear pattern where the initial 
trials in the measure were most difficult, with difficulty 
then decreasing and plateauing until the final number of 
trials. RAI trials are presented in a fixed order, and each 
subscale is presented as a full block of trials. In 
progressing from one subscale to the next, participants 
may perform more poorly on the initial trials of the 
newly started subscale simply because there is a sudden 
change in the required relational response. As 
participants progress beyond these initial trials and 
become more acquainted with the type of relational 
problems with which they are presented, responding may 
then become more fluent, before the final most difficult 
trials then lead to an increase in difficulty once more. 
This idea could be tested quite easily by comparing the 
standard RAI to one where all trials are presented in a 
random sequence.  
Considerations and limitations 

Many of the analyses used to test the research 
questions in this paper are relatively novel to Contextual 
Behavioral Science and research on Relational Frame 
Theory generally. On the one hand, this is a strength of 
the paper; previously unused methods can naturally 
provide novel insights into the measures that we use. On 
the other hand, readers may question whether these 
methods are appropriate for CBS research. I believe the 
answer is yes. Although novel to CBS, Item Response 
Theory in general is a well-established, theoretically 
coherent alternative to Classical Test Theory 
(Embretson & Reise, 2013; Johansson et al., 2023). 
Indeed, its utility in improving scale items (as discussed 
in the previous section) represents a valuable addition 
not only for the development of the RAI, but also 
measures used within CBS (and beyond) more generally. 
In terms of the individual-level estimation approach used 
here, the same response applies; although not commonly 
employed within CBS, the estimation of (im)precision 
around individual participants’ scores has been done 
extensively in literature on psychological assessment 
(e.g., Dudek, 1979). Indeed, recently Hussey (2020) 
applied a very similar approach to the Implicit 
Relational Assessment Procedure (commonly used 
within CBS). As an ACBS Task Force report (Hayes et 
al., 2021) recently recommended, CBS requires novel 
psychometric methods which can be used as quality 
standards for the assessment of the idiographic utility of 
measures; this is precisely what the method employed 
here (and by Hussey, 2020) achieves, and future research 
could endeavor to conduct similar analyses in other 
measures used within CBS for idiographic inferences.  
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In terms of the analysis of individual-level 
discriminability (from both chance responding and from 
other participants), several points of consideration arise 
based on the results reported here. Most critically is the 
question of what the “ideal” benchmark for these 
different forms of discriminability ought to be. As one 
reviewer noted, it would probably be unreasonable to 
suspect that every participant should be discriminable 
from every other participant, and we certainly should 
not expect that every participant should be 
discriminable from chance. Additionally, we have no 
sense of how the current quality of the RAI compares to 
other measures of relational responding. It may well be 
the case that relative to other extant measures the RAI 
performs relatively well in this regard. This is, of course, 
an empirical question. With all of this said, however, it 
is worth reflecting on what we as a community might 
consider as an acceptable degree of discriminability for 
our instruments. This will of course vary depending on 
the context in which the measure is to be used and the 
specific goals of the researcher(s) using the measure.  

One potential avenue for identifying more 
meaningful benchmarks for acceptable degrees of 
discriminability could be to examine the quality of other 
measurement instruments from other fields. In the 
context of psychological assessment generally, it is 
important to note that the most commonly-used 
measures (e.g., IQ tests, neuropsychological batteries) 
exhibit rather high reliabilities (e.g., r = 0.97 for the 
WISC IQ test, r = 0.80 for the RBANS 
neuropsychological battery; Cheng et al., 2011; Gygi et 
al., 2017). These high reliabilities will necessarily be 
associated with high Standard Errors of Measurement 
(and by extension, narrow confidence intervals around 
scores individual-level scores; Dudek, 1979). Extant data 
from these assessments (and similar) could be reused to 
calculate the mean discriminability of participants from 
one another to serve as an initial starting point to 
compare the RAI against. Of course, this will be an 
imperfect comparison; the distribution of scores in the 
subscales of the RAI are demonstrably not Gaussian, 
which will necessarily have an impact on discriminability 
of scores at different points in the distribution. 
Regardless of these specifics, it would be remiss to 
assume that the current state of the measure is its best 
possible iteration, particularly given its poor 
performance on more traditional psychometrics.   
Conclusion 

The results from this study paint a clear picture: 
as far as the measurement properties of the RAI is 
concerned, there is room for improvement. RAI scores 
are not particularly diagnostic at the individual level, 
and the group-level psychometric properties of the task 
are suboptimal. Fortunately, these problems ultimately 
are solvable in a clear manner, and this paper has 
provided a roadmap for researchers on how to achieve 
certain levels of precision and/or psychometric integrity 
when using the measure in future. More problematically, 
however, a central assumption of RAI subscales (i.e., 

that they conform to a Guttman structure) does not 
appear to be strongly evident in any of the RAI subscales. 
The methods of IRT provide an excellent set of tools for 
refining the scale in the future in this regard. However, 
the observed violations of Guttman structure in the 
current form of the RAI present a challenge to the 
conception of complexity in relational responding which 
drove the development of this scale ordering in the first 
place. A greater consideration of measurement issues 
may provide greater insight not only into the utility of 
our measures, but the validity of the theoretical 
assumptions upon which they are based. 
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