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Abstract 

 

Learning is a central concept in many scientific disciplines. Communication about research on 

learning is, however, hampered by the fact that different researchers define learning in 

different ways. In this paper, we introduce the extended functional definition of learning that 

can be used across scientific disciplines. We provide examples of how the definition can be 

applied to individual organisms, genes, machines, and groups. Using the extended functional 

definition (a) reveals a heuristic framework for research that can be applied across scientific 

disciplines, (b) allows researchers to engage in intersystem analyses that relate the behavior 

and learning of different systems, and (c) clarifies how learning differs from other phenomena 

such as (changes in) behavior, damaging systems, and programming systems.  
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Learning in Individual Organisms, Genes, Machines, and Groups:  

A New Way of Defining and Relating Learning in Different Systems 

Learning is of fundamental interest to many scientists. Psychologists have devoted 

decades of effort to understand how humans learn while their counterparts in sociology, 

economics, and anthropology examine how groups of humans and even societies learn. 

Within the biological sciences, researchers analyze learning throughout the animal kingdom, 

from whole organisms down to their neurons, and even their genes, while computer scientists 

probe learning in robots and other artificial systems. Despite this common interest in learning, 

there is little agreement on what it means to say that learning has taken place. For instance, 

Barron et al. (2015) list no less than 59 different definitions of learning that originate from 

different scientific disciplines such as psychology, neuroscience, and computer science (also 

see Burgos, 2018; Lachman, 1997). As they correctly point out, this divergence of definitions 

impairs transdisciplinary collaboration and synthesis. Although it is naïve to think that there is 

one “true” definition of learning, we believe that it is worthwhile to strive for definitions of 

learning that can be used across different disciplines. Such definitions would foster 

communication between researchers and thereby facilitate cross-fertilization between 

disciplines. In this paper, we propose a definition of learning that can be used to describe 

learning in different systems such as whole individual organisms, parts of individuals, non-

organic machines, as well as groups.   

The definition that we put forward is an extension of the functional definition of 

learning provided by De Houwer et al. (2013). Hence, we refer to our definition as the 

extended functional definition of learning. In Part I of this paper, we first explain how it goes 

beyond the definition of De Houwer et al (2013) and then specify the concepts that it builds 

on. To make the definition more concrete, we apply it to several known types of learning in 
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whole individual organisms (e.g., a human, dog, or rat). In Part II, we illustrate how the 

extended functional definition of learning can also be used to describe learning in other 

systems, more specifically genes, machines, and groups. In Part III, we argue that the 

extended functional definition of learning reveals a common heuristic framework for research 

on learning that can be applied to different systems. As such, it stimulates cross-disciplinary 

interactions and highlights issues to be addressed in future research. It also allows for 

intersystem analyses about how behavior and learning in one system is conditional on 

behavior or learning in another system. Finally, it allows for more conceptual precision by 

clarifying the differences between closely related concepts such as behavior, learning, and 

programming. In Part IV, we discuss possible limitations of the definition, including the fact 

that using it requires assumptions about causality that can be difficult to verify.  

Throughout the paper, we use concrete examples to illustrate abstract ideas. Some of 

these examples correspond to known phenomena. Others are hypothetical. Please keep in 

mind that we do not wish to make claims about the validity of the specific examples that we 

selected, nor do we wish to limit our ideas to those examples. Instead, the examples are 

simply meant illustrate the nature and merits of our definition of learning.  

Part I: Defining Learning 

The Extended Functional Definition of Learning 

De Houwer et al. (2013) defined learning as “changes in the behavior of an organism 

that are the result of regularities in the environment of that organism” (p. 633) and noted that 

“the concept of regularity encompasses all states in the environment of the organism that 

entail more than the presence of a single stimulus or behavior at a single moment in time” (p. 

634). This definition qualifies as a functional definition in that changes in behavior are said to 

be a function of regularities in the environment. Although it has proven useful within 
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psychology (see De Houwer & Hughes, 2020, for an overview), Burgos (2018) correctly 

pointed out that the functional definition of De Houwer et al. explicitly refers to individual 

organisms and therefore does not apply to others systems such as inorganic machines. 

Another limitation is that De Houwer et al. (2013), like many others who proposed a 

definition of learning, did not provide a precise definition of the concept “behavior”. They 

only noted that behavior “encompasses every observable response that a living organism can 

make” (p. 633) without clarifying what they mean with a response.  

To remedy these limitations, we extend the definition of De Houwer et al. (2013) by 

defining learning as “changes in the way a system behaves towards a stimulus that are the 

result of regularities in the environment of that system”. A system can refer not only to a 

whole organism (e.g., a human, dog, or rat) but also to inorganic, man-made machines (e.g., 

robots, self-driving cars, artificial intelligence), to constituent parts of such systems (e.g., the 

organs, neurons, or genes of an individual organism), or to groups (e.g., herds, colonies, 

societies). More generally, a system can be anything non-static, that is, anything that can be in 

different states. A state can be defined as a condition or way of being of a system. This is a 

broad definition which includes both static states (e.g., being at a certain location) and 

dynamic states (e.g., moving in a certain direction) and which applies to both objective states 

(i.e., that can be observed by researchers who analyze a system; e.g., moving in a certain 

direction) and subjective states (i.e., that can be observed only by the system itself; e.g., 

conscious feelings and thoughts). A state transition occurs when the state of a system changes. 

We define behavior as “transitions in the state of a system that are due to a stimulus in the 

environment”. Hence, also our definition of behavior is a functional definition in that the state 

of a system is said to be a function of a stimulus in the environment. We thus think of 

behavior as a response of the system to a stimulus in the environment and will use the 

expression “responding to” as a synonym for “behaving”. This implies that changes in 
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behavior towards a stimulus are changes in the way a particular stimulus influences the state 

of a system and that learning is the impact of regularities on how a particular stimulus 

changes the state of a system. 

How Do Our Definitions Relate to Other Definitions? 

To avoid misunderstandings, it is important to point out that our definitions of 

regularities, states, behavior, and learning deviate from how these concepts are sometimes 

used by other scientists or lay persons. First, whereas many might think of regularities as 

necessarily involving events that occur repeatedly, we adopt the broader definition of 

regularities that encompasses all events that are orderly, even if those events occur at one 

point in time. Hence, also the co-occurrence of two or more stimuli at one point in time 

qualifies as a regularity from this perspective (also see De Houwer et al., 2013; De Houwer & 

Hughes, 2020, Introduction, Footnote 2).  

Second, some might think of states as necessarily static. As noted above, we also 

consider dynamic ways of being as states of a system (e.g., being in a state of moving 

forward). We realize that this can create confusion between the notion of dynamic states and 

the notion of state transitions because a dynamic state can itself be described as consisting of 

transitions in states (e.g., a movement as a transition from being at one location to being at 

another location). Nevertheless, by allowing for dynamic states, we broaden the class of 

possible state transitions so that it includes also transitions from a static state to a dynamic 

state, from a dynamic state to a static state, and from one dynamic state to another dynamic 

state. 1  

                                                           
1 It is worth noting that there is merit in thinking about state transitions in a probabilistic manner (e.g., there is a 

higher or lower probability of the system being observed to transition from one state to another at a given 

moment in time). For ease of communication, however, we will talk about state transitions that do or do not 

occur at a given moment in time. 
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This brings us to our third concept: behavior. Often the term “behavior” is used to 

refer to what we would call a dynamic state of a system: a way of being that involves state 

transitions (e.g., moving forward). In contrast, we think of “behaving” as “responding to”. We 

thus use the term behavior in a more restricted manner that requires both a state transition and 

an assumption about the functional cause of the state transition. For instance, whereas the 

claim that a system is in the state of moving forward (i.e., transitioning from being in location 

A to being in location B) implies only a description of the system, referring to moving 

forward as a behavior requires the assumption that there is a particular stimulus that caused 

the state transition, that is, a stimulus without which this state transition would not have 

occurred (e.g., the stimulus that the system approaches or the stimulus that the system moves 

away from). Hence, state transitions that occur spontaneously (i.e., that are not a function of 

stimuli in the current or past environment of the system) do not qualify as behavior in the way 

we define it.  

Finally, unlike many other definitions of learning (e.g., learning as the storage of 

information in the brain; see Barron et al., 2015, for a review), our definition does not imply 

assumptions about representations or mechanisms. This does not mean that using the 

definition requires a denial of the existence of representations or mechanisms via which 

information is processed. It only means that the definition allows one to identify instances of 

learning and describe the conditions under which learning occurs without making reference to 

the existence or nature of representations and mechanisms that mediate learning. We believe 

that this approach is particularly advantageous when studying different systems that probably 

differ substantially with regard to the representations and mechanisms that mediate learning.  

The extended functional definition of learning only requires assumptions about the causal 

impact of regularities on changes in behavior towards a specific stimulus. We use the term 

“causal” in the sense of “functional causation” which implies only that an outcome is a 
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function of (i.e., would not have been that way without) the cause. Although functional causes 

do not inform us about the representations and mechanism via which a cause produces an 

outcome, the claim that an outcome is a function of a cause does provide information about 

the determinants of the outcome (see Chiesa, 1992). Functional concepts therefore provide 

more than mere description. By specifying what causes what, functional definitions also set 

the stage for research on the representations and mechanisms that mediate a causal relation 

(De Houwer & Hughes, 2020).  

Please note that neither our functional concepts (i.e., behavior, learning), nor our 

descriptive concepts (i.e., regularities, systems, stimuli, states, state transitions) require 

ontological assumptions. We simply believe that, as a researcher, it can be useful to formulate 

assumptions about (amongst other things) systems that are present in the world, the states that 

those systems can be in, the presence of stimuli and regularities in the environment of those 

systems, and the functions of those stimuli and regularities (e.g., their function to alter the 

state of a system or to influence the way in which a stimulus alters the state of a system). In 

order to conduct research, it is not necessary that those assumptions are correct in an 

ontological sense. It suffices that they help the researcher to reach his or her scientific goals 

(e.g., to predict and influence behavior; see Hayes & Brownstein, 1985). This also implies 

that the scientific goals of the researcher determine which system, states of the system, 

stimuli, regularities, and functions that the researcher focusses on. 

Applying the Extended Functional Definition of Learning to Known Learning 

Phenomena in Whole Individual Organisms 

In research on learning in individual whole organisms, several types of learning can be 

distinguished based on the type of regularity that produces the change in behavior toward a 

stimulus (see De Houwer & Hughes, 2020, for an overview). In this section, we consider three 
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of these types of learning. Arguably, the most basic type of learning involves a change in 

behavior that is due to the repeated presentation of one stimulus (see Figure 1). To illustrate, 

imagine that you (i.e., the system) suddenly hear a loud bang. At this time (Time 1), the loud 

bang (stimulus) may cause you to transition from being in calm state to being in a highly 

startled state. This state transition as the result of the loud bang constitutes an instance of 

behavior (i.e., Behavior 1 at Time 1). Now imagine that you repeatedly experience the loud 

bang. This constitutes a regularity in that it involves more than one stimulus at one point in 

time. When you afterwards (at Time 2) experience the loud bang again, you may be startled to 

a far lesser extent than before. This means that the loud bang caused a different state transition 

at Time 1 than at Time 2 and thus that a change in behavior towards the loud bang has 

occurred (i.e., responding to the loud bang is different at Time 1 than at Time 2). If it can be 

shown that this change in behavior is due to the regularity in the presence of the loud bang 

(e.g., by showing that the change does not occur without the regularity) then it can be 

concluded that learning occurred. Common examples of this type of learning are habituation 

(what we have just described; see Figure 1) and sensitization (an increase in the intensity of a 

response to a stimulus due to the repeated presentation of the stimulus; see De Houwer & 

Hughes, 2020, Chapter 1).  
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Figure 1. A visual illustration of learning that involves a regularity in the presence of a single stimulus 

(habituation). 

A second type of learning involves a change in behavior that is due to a regularity in 

the presence of two stimuli. This type of learning can be referred to as classical or Pavlovian 

conditioning (see Bouton, 2016, for an overview). To illustrate, imagine that we ring a bell 

(Stimulus 1) in the presence of a dog (system). At Time 1, the bell does not lead to a 

particular state transition (e.g., no salivation response to the bell). Later on we introduce a 

regularity involving two stimuli: we pair the ringing of the bell with the administration of 

food. At Time 2, the bell (Stimulus 1) now leads to the state transition we are interested in 

(i.e., salivation response to the bell). This increase in the salivation response to the bell from 

Time 1 to 2 constitutes a change in behavior. If we can show that this change is due to the 

regularity between the ringing of the bell and food (and not, for instance, to the mere presence 



LEARNING BEYOND THE INDIVIDUAL ORGANISM 11 
 

of food), then we can say that learning, more specifically classical conditioning, has taken 

place (see Figure 2). 

 

Figure 2. A visual illustration of learning that involves a regularity in the presence of two stimuli 

(classical conditioning).  

A third type of learning, which can be referred to as operant conditioning, involves a 

change in behavior that is due to a regularity in the presence of stimuli and responses (see 

Catania, 2013, for a review). To illustrate, imagine that we place a rat (system) into a training 

chamber which contains a light, a lever which can be pressed, and a food dispenser. At Time 

1, turning on the light in the chamber does not lead to the behavior we are interested in (i.e., 

lever pressing in response to the light). We then introduce a regularity such that if, in the 

presence of the light (Stimulus 1), the behavior does occur (e.g., because the rat is actively 

prompted by the researcher into pressing the lever) then food is delivered (Stimulus 2). At 
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Time 2, we now observe that the presence of the light is followed by lever pressing. Hence, 

we can infer that the behavior of lever pressing in response to the light has changed from 

Time 1 to Time 2. If this change is due to a regularity involving stimuli and responses (i.e., 

the fact that lever pressing leads to food when the light is on), then the change can be referred 

to as learning, more specifically as an operant conditioning effect (see Figure 3). 2 

 

Figure 3. A visual illustration of learning that involves a regularity in the presence of stimuli and 

responses (operant conditioning).  

                                                           
2 Note that cage exploration and lever pressing are dynamic states that in all likelihood also qualify as instances 
of behavior: the state transitions involved in these dynamic states are almost certainly not random but a 
function of stimuli in the environment of the rat (e.g., lever pressing is a function of the presence of a lever). 
For our analysis, however, it does not matter whether cage exploration and lever pressing are behaviors or 
mere dynamic states. Because we are interested only in behavior towards the light, we need to focus only on 
the impact of the light on the state of the system. Because the impact of the light on the system is different at 
Time 1 (i.e., no impact) than at Time 2 (i.e., light causes a transition from cage exploration to lever pressing), 
we can say that there is a change in the behavior towards the light. If this change in behavior towards the light 
is due to a regularity, then this change qualifies as an instance of learning. 
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Part II: Learning Beyond the Individual Organism 

In Part I we focused our attention on learning in one type of system – individual whole 

living organisms such as humans, rats, and dogs. However, the extended functional definition 

of learning also applies to many other systems. Applying the definition to these other systems 

simply involves specifying the nature of the system, possible states and behaviors of the 

system (i.e., how the state of the system transitions as the result of stimuli in the 

environment), possible changes in the behavior of the system, and regularities that might 

cause those changes in behavior. In what follows, we briefly illustrate how the definition 

applies to three systems other than whole individual organisms: genes, machines, and groups 

of individual organisms.  

Genetic Learning 

All living organisms contain genetic material. Although there are debates about the 

exact nature of genes, one could argue that genes are subsets of this genetic material, next to 

other parts of DNA and other genetic material in the nucleus, mitochondria, and cytoplasm 

(Gerstein et al., 2007). Much of this other genetic material seems to be involved in the 

epigenetic regulation of genes (e.g., via methylation; Moore, 2015). Both genes and 

regulatory genetic material can be in different states. For instance, genes can be inactive or 

actively involved in the production of proteins. Likewise, epigenetic regulatory mechanisms 

can be inactive or actively involved in the regulation of genes. Hence, at least in principle, 

genes and epigenetic regulatory mechanisms can behave (i.e., transition their state in response 

to a stimulus), change their behavior (i.e., respond differently to the same stimulus at different 

points in time), and learn (i.e., change their behavior as the result of regularities).  

To illustrate, consider the idea of “stress memory” in plants. When certain varieties of 

maize plants are subjected to the same stimulus (dehydration) over and over again they show 
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improved retention of water compared to the first time they encountered that stimulus (e.g., 

Ding et al., 2012; Virlouvet & Fromm, 2014). These changes in behavior in the face of 

repeated contact with the stimulus are evident not only at the organismic and cellular levels, 

but at the genetic level as well: transcription levels of stress response genes are significantly 

higher after multiple presentations of a stressful stimulus (dehydration) compared to the first 

presentation of that stimulus (for more on “transcriptional stress memory”, see Avramova, 

2015). 

From our perspective, the state transition (from no transcription to a low level of 

transcription of stress response genes) produced by the stimulus (dehydration) at Time 1 is an 

example of a genetic behavior. So too is the state transition (from no transcription to a high 

level of transcription of stress response genes) that occurs when the same stimulus 

(dehydration) is presented at Time 2. This increase in transcription levels from Time 1 to 2 

constitutes a change in genetic behavior, that is, a change in how the stress response genes 

respond to dehydration. If this change in behavior is due to the repeated occurrence of 

dehydration, genetic learning can be said to have taken place. In this case, it would qualify as 

an instance of genetic sensitization (see Figure 5). If the intensity of gene expression in 

response to dehydration were to decrease as a function of repeated dehydration then we would 

instead speak of genetic habituation (also see Hughes & De Houwer, 2020). 3 

                                                           
3 The role of royal jelly in the development of queen bees also seems like a candidate for this type of learning 

(see Chittka & Chittka, 2010; Kucharski, 2008). A change in behavior towards the presence of royal jelly 

(decrease in DNMT3 expression and the associated upregulation of developmental genes in queen-destined 

larvae) appears to take place when the system is exposed to the royal jelly over and over again. Note that testing 

this claim would require that we systematically manipulate the number of times a system (honey bee larvae) is 

exposed to the same stimulus (royal jelly) while controlling for possible confounding factors (e.g., mere passage 

of time) and that we look for differences in genetic responding to the administration of royal jelly. 
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Figure 4. A visual illustration of one instance of genetic learning (i.e., genetic sensitization). 

Learning in Inorganic Machines 

 Although one could argue that living organisms are machines, a distinction is often 

made between living organisms and inorganic machines (in a broad sense that includes neural 

nets and artificial intelligence systems). The idea that also inorganic machines can learn has 

given rise to an extensive literature on machine learning (e.g., Burgos, 2018; Rahwan et al., 

2019). Here we consider machine learning from the perspective of the extended functional 

definition of learning.  

Like individual organisms, machines can be in different states. For instance, a robot 

can be static, it can move forward, or it can change direction in a particular way (e.g., turn 

left, turn right). Likewise, an artificial intelligence (e.g., a neural net) can signal to move a 
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chess piece to the right or to the left. Hence, also for machines it makes sense to ask whether 

they can behave (i.e., transition their state as the result of a stimulus in the environment), 

change their behavior towards specific stimuli (i.e., change the way they transition their state 

as the result of a particular stimulus in the environment), and learn (i.e., change their behavior 

towards a specific stimulus as the result of a regularity in their environment). 

 Consider the example of a humanoid robot that is being trained to navigate the world 

and circumvent obstacles. From the perspective of the extended functional definition of 

learning, the claim that a robot learns to circumvent an obstacle would imply the following 

(see Figure 5). First, at Time 1, when the robot approaches the location of the obstacle 

(Stimulus 1), it simply does what it would have done without the obstacle: it moves forward 

and thus fails to go beyond the obstacle. Now imagine that during subsequent attempts, the 

robot is prompted into moving to the left of the obstacle once nears the obstacle. Because the 

robot turns left, it succeeds in circumventing the obstacle. At Time 2, we see that the robot 

successfully moves via the left of the obstacle even without being prompted. This means that 

the robot has changed its behavior towards the obstacle: it did not change direction when 

nearing the obstacle at Time 1 but it did change direction when nearing the same obstacle at 

Time 2. If this change in behavior is due to the regularities that occur in between Time 1 and 

Time 2 (i.e., because it succeeds in moving beyond the obstacle when it turns left after 

detection of the obstacle), then we can say that the robot has learned, more specifically, it has 

learned to circumvent the obstacle. Because the regularities that cause the change in behavior 

involve stimuli and responses, this change in behavior qualifies as an instance of operant 

conditioning of a humanoid robot.  
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Figure 5. A visual illustration of one type of machine learning (i.e., operant conditioning in a 

humanoid robot). 

Group Learning 

 Although the term “group” may seem intuitive in everyday language, there is much 

debate about what the term means in science (Pietraszewski, 2021). Regardless of this debate, 

it seems safe to say that groups always involve the presence of multiple group members (e.g., 

organisms, machines). From the perspective of the extended functional definition of learning, 

each group member could be treated as a separate system but all group members together can 

also be treated as a single system. Whereas the former would involve analyzing the states and 

behaviors of a group member, the latter would focus on the states and behaviors of the group 

as a whole. For instance, a school of fish can be in a state of moving forward, turning left, or 
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turning right. Hence, it makes sense to ask whether a group can behave (transition its state in 

response to a stimulus), change its behavior towards a specific stimulus (show different state 

transitions in response to the same stimulus at different moments in time), and learn (change 

its behavior towards a specific stimulus as the result of a regularity in its environment).  

Consider the hypothetical example of a school of fish that is often found in the vicinity 

of a shipwreck. At Time 1, you observe that when the school is passing the shipwreck at a 

certain distance, it changes direction and approaches the shipwreck. At a later point in time, 

however, a predator (e.g., a shark) starts living near the shipwreck. From then onwards, 

whenever the school of fish changes direction to approach the shipwreck, it is attacked by the 

predator. At a later Time 2, you notice that when the school is passing the shipwreck, it no 

longer changes direction to approach the shipwreck. The school thus changed its behavior 

towards the shipwreck: it responds differently to the presence of the shipwreck at Time 1 than 

at Time 2. If this change of behavior occurred because of the regularity that is present in the 

environment between Time 1 and Time 2 (a predator attack when the school approaches the 

shipwreck), then this change qualifies as in instance of learning. Because this regularity 

involves stimuli and behaviors, the change in the behavior of the school qualifies as an 

instance of operant conditioning. 
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Figure 6. A visual illustration of one type of group learning (i.e., operant conditioning of a 

school of fish). 

Part III: Heuristic and Generative Value of our Definition 

 So far we have seen how our extended functional definition can be applied across 

many types of systems. But what exactly is the value of having such a widely applicable 

definition of learning? In this section of the paper, we first illustrate how the definition can 

facilitate the study of learning in one type of system (e.g., genes) by relating it to research on 

learning in another type of system (e.g., whole individual organisms). We then discuss how 

the definition allows for intersystem analyses about how behavior and learning in one system 

(e.g., the algorithm in a humanoid robot) is conditional on learning in another system (e.g., the 

robot). Finally, we clarify how the definition allows us to tease apart closely related concepts 
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such as behavior, learning, and programming, thereby allowing for more precise 

communication between researchers.   

Increasing Knowledge within a Scientific Discipline by Looking at Other Scientific 

Disciplines: A Cross-disciplinary Heuristic Framework for Research on Learning  

 As Barron et al. (2015) correctly pointed out, the fact that researchers from different 

disciplines use different definitions of learning, impedes transdisciplinary collaboration. Even 

though there might be some common ground in the various definitions (see Barron et al., 

2015, for suggestions), this does not change the fact that different definitions often imply 

different criteria for establishing whether (a specific type of) learning has occurred (see 

Hughes & De Houwer, 2020, for examples). Because the extended functional definition can 

be adopted in various scientific disciplines, it could be used to improve transdisciplinary 

collaboration in research on learning. Adopting the extended functional definition of learning 

across disciplines would not only allow for consistency in communicating about learning, but 

also puts forward shared criteria for establishing (types of) learning. This in turn provides the 

basis for an exchange of ideas between disciplines where research in one discipline can help 

organize existing research and provide inspiration for future research in another discipline.  

The examples provided in Part II already illustrate how concepts such as habituation 

and operant conditioning can be used in different disciplines that study different types of 

systems. Via this conceptual bridge, one can verify whether variables that are known to 

moderate habituation and operant conditioning in one type of system have similar effects on 

habituation and operant conditioning in another type of system. For instance, we know that 

habituation in whole individual organisms depends on whether stimulus presentations are 

massed or distributed over time (see Thompson, 2009, for a review). To the best of our 

knowledge, it has not yet been examined whether this variable has a similar impact on 
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habituation in genes. Examining this issue can provide new methods for predicting and 

influencing the behavior and learning of genes and epigenetic mechanisms. This simple 

example illustrates how the shared use of the extended functional definition of learning across 

disciplines can help to quickly identify gaps in our knowledge. 

When the heuristic framework is used across disciplines, it not only helps highlight 

gaps in our knowledge but also reveals similarities and differences between the moderators of 

learning in different systems. By promoting knowledge of the moderators of learning, the 

framework helps researchers in various disciplines to influence learning in the system they 

focus on (i.e., to influence whether and to which extent it occurs) and to test theories about the 

underlying processes that allow for learning occur (i.e., to examine whether theories correctly 

predict when learning will occur; see De Houwer & Hughes, 2020).  

Increasing Knowledge about Interactions between Systems by Relating Behavior and 

Learning in Different Systems: Intersystem Analyses 

  Although it is possible to distinguish between different types of systems, often those 

systems are interrelated. For instance, an individual fish can be part of a school of fish. 

Likewise, an artificial intelligence is part of a humanoid robot. Or genetic material and 

neurons can be part of a whole individual organism. In these cases, an analysis of the behavior 

or learning in one system can be related to an analysis of the behavior or learning in another 

system. Because the extended functional definition allows one to analyze behavior and 

learning in different systems using the same concepts, it facilitates the analysis of interactions 

between behavior and learning in different systems. In this section, we provide three examples 

of such intersystem analyses.  
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 First, consider a humanoid robot than contains an artificial intelligence, more 

specifically, an algorithm that changes weights in an artificial neural net that controls the 

behavior of the robot. Imagine that when the robot manages to circumvent the obstacle by 

turning left, the algorithm strengthens the links between nodes that code the sensory input 

observed at that location with nodes that code the motor responses for turning left. Each time 

the robot manages to overcome the obstacle, these links are strengthened to the same extent. 

Eventually, after a certain number of times that the robot has circumvented the obstacle, the 

link in the network has become so strong that the robot will immediately change its direction 

(i.e., move to the left of the obstacle) upon detection of the obstacle.  

From the perspective of the extended functional definition of learning, one can say 

that, in the above example, the learning of the humanoid robot is conditional on the behavior 

of the algorithm. The algorithm merely behaves: it changes its state from inactive (i.e., not 

strengthening links) to active (i.e., strengthening links) as the result of an outcome (i.e., 

circumventing an obstacle). The algorithm does not change its behavior (i.e., circumventing 

the obstacle each time results in the same strengthening of links), which implies that it does 

not learn (because all learning involves a change in behavior). The robot, however, does learn: 

the way it responds to the proximity of the obstacle changes as the result of a regularity in its 

environment. That said, there may be other cases where the learning of a robot is conditional 

on the learning of an algorithm. Assume that the extent to which the algorithm changes the 

strength of a link reduces each time the robot manages to overcome the obstacle (i.e., that the 

change in link strength is bigger after the first successful trial than after the second one, that it 

is bigger after the second trial than after the third one, and so). In this case, the algorithm does 

learn: its response to overcoming the obstacle changes because of a regularity (i.e., the 

repeated experience of overcoming an obstacle). These examples illustrate that conclusions 

about whether a particular system (e.g., a humanoid robot, algorithm) learns, depend only on 
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an intrasystem analysis (i.e., on whether there are arguments to say that a regularity changes 

the way in which a system behaves towards a specific stimulus). Intersystem analyses come 

into play only when considering how different systems interact. 4 

As a second example, let us return to genetic sensitization (see Figure 4). Imagine that 

the low transcription levels of the stress response genes in response to dehydration are due to 

the fact that the genes are covered with a substance that reduces the rate of transcription (e.g., 

methyl). When dehydration is experienced, an epigenetic (e.g., demethylation) mechanism 

becomes active that removes part of this material from the genes, thus allowing for a higher 

level of transcription in response to future instances of dehydration (see Wu & Zhang, 2010, 

for evidence for such a mechanism). Within such a scenario, the stress response genes have 

learned (i.e., altered their activity in response to dehydration as result of the repeated 

experience of dehydration) in a way that is conditional upon the behavior of an epigenetic 

mechanism (i.e., removal of methyl in response to dehydration). If the behavior of the 

epigenetic mechanism towards dehydration also changes as the result of the fact that 

dehydration occurs repeatedly (e.g., it removes more methyl in response to dehydration the 

more often dehydration is experienced), then the epigenetic mechanism can also be said to 

have learned. Also note that the learning of the stress response genes could in turn be a 

condition for learning at the level of cells and the whole organism (e.g., as the result of the 

                                                           
4 Such interactions can be looked at from both a functional perspective and a mechanistic perspective. From a 

functional perspective, the learning of one system can be said to be conditional on the behavior or learning of 

another system. This merely implies that learning in the first system (i.e., the impact of regularities in the 

environment of that system on how the system responds to a particular stimulus in its environment) is itself a 

function of the behavior or learning of a second system (i.e., how the second system responds to a stimulus or 

how regularities change the way in which the second system responds to a stimulus). From a mechanistic 

perspective, the learning of one system can be said to be mediated by the behavior or learning of another system. 

This implies that the behavior or learning of the second system is a necessary step via which regularities in the 

environment change the behavior of the first system. Hence, unlike a functional perspective on intersystem 

analyses, a mechanistic perspective on intersystem analyses implies contiguous causation, that is, the idea of a 

chain of events in which one event puts into motion another event (see Chiesa, 1992, De Houwer & Hughes, 

2020, and Hayes and Brownstein, 1986, for a more detailed discussion on the distinction between functional and 

mechanistic approaches in science). Note that the extended functional definition of learning highlights that the 

parts of a mechanism are not necessarily static but can behave and learn.  
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repeated experience of dehydration, the retention of water by cells and the whole plant in 

response to dehydration increases). This illustrates that the behavior and learning of more than 

two systems can be interrelated. 5 

 As a final example, consider the school of fish that changes its response to the 

shipwreck (Figure 6). It might be the case that the learning of the school is conditional on the 

fact that individual fish in the school learn to stay away from shipwreck. According to our 

definition, an individual fish has learned if its behavior towards a stimulus changes (e.g., 

changes its response to the proximity of the shipwreck) because of regularities in its 

environment (e.g., a predator attack when it approaches the shipwreck). Other fish in the 

school, however, might display the same transitions in state without having learned anything. 

For instance, it could be that some fish in the school always copy the transitions in state of the 

fish that surround them (Herbert-Read et al., 2015). Hence, if some fish learn to stay away 

from the shipwreck, these other fish also stop approaching the shipwreck. The latter fish, 

however, have not learned but merely continue to behave in the same way: they always mimic 

the transition in state of the fish surrounding them. Nevertheless, the group itself can be said 

to have learned, and this learning was conditional upon learning at the level of certain 

individuals. 

 Although these examples illustrate that the extended functional definition allows for 

intersystem analyses, please keep in mind that it does not require this type of analyses. Even 

when it is not possible to relate learning and behavior in one system to learning and behavior 

in other systems, there is still merit in analyzing learning and behavior in the first system. 

                                                           
5 This idea resembles the idea of multilevel-selection theory in biology (Okasha, 2006). One important difference 

is that evolutionary selection involves successive generations of systems (e.g., a particular species of animal) 

whereas learning involves individual systems (e.g., a particular member of an animal species). Another 

difference is that selection refers exclusively to changes as the result of consequences whereas learning refers to 

changes due to consequences of behavior (i.e., operant conditioning) but also changes due to regularities in the 

presence of one or multiple stimuli (e.g., habituation, classical conditioning). 
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Consider the example of deep learning in artificial neural networks (LeCun et al., 2015). With 

deep learning networks, it is often difficult to comprehend which changes in the networks 

produce changes in the output of the networks (i.e., the network can be conceived of as a 

black box). Also in these cases, intrasystem analyses allow one to analyze the learning and 

behavior of the network. More specifically, by revealing the environmental events that control 

the behavior and learning of the network, one can predict and influence the output of the 

network solely on the basis of intrasystem analyses. This can be achieved by observing and 

manipulating the environmental events that the intrasystem analyses identifies as controlling 

the output of the system. In sum, there is merit in intrasystem analyses even in the absence of 

intersystem analyses. 

Clarifying the Boundaries of Behavior and Learning: Increased Conceptual Precision 

The final example of the previous section not only illustrates the complex relations 

that can exist between learning and behavior of different systems but also highlights that, 

because of the functional nature of our definitions, claims about behavior and learning always 

involve causal assumptions. For instance, the same state transition (e.g., from moving forward 

to turning left) can be labelled as different behaviors (e.g., mimicking other fish vs. avoiding a 

shipwreck) depending on what the state transition is a function of (e.g., the state of other fish 

vs. the proximity to a shipwreck). Likewise, whether learning has occurred cannot simply be 

observed by looking at changes in the state of systems. It also requires two causal 

assumptions. First, learning requires a change in behavior towards a stimulus, that is, a change 

in the manner in which this stimulus influences the state of a system at different moments in 

time. Hence, the claim the learning has occurred depends on assumptions about the stimulus 

that influences the state of a system at different moments in time. Second, a change in 

behavior towards a stimulus qualifies as learning only if it is due to a regularity in 
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environment (e.g., the repeated presence of a stimulus, the pairing of stimuli, or the fact that a 

behavior results in a stimulus). The importance of causal assumptions when applying our 

definitions of learning and behavior is a direct consequence of the functional nature of these 

definitions: they imply that the state of system (in the case of claims about behavior) or the 

behavior of a system (in the case of learning) is a function of specific events in the 

environment (Hayes & Brownstein, 1986). Hence, behavior is more than a state transition 

(i.e., the state transition should be a function of a specific stimulus), a change in behavior is 

more than a change in state transitions (i.e., the change in state transitions should reflect a 

change in the way that stimulus influences the state of the system), and learning is more than 

a change in behavior towards a stimulus (i.e., the change in behavior should be a function of a 

regularity). These distinctions allow researchers to communicate in precise ways and thus 

avoid confusion.  

Because learning requires not only the observation of a change in state transitions but 

also two causal assumptions, we can delineate learning from other phenomena. First, there 

can be no learning when there is no change in state transition. Imagine that during 

manufacturing, a programmer programs the neural net of a humanoid robot in such a way that 

the robot always turns left when it nears the position of the obstacle, so that it always 

circumvents the obstacle. In that case, the robot has not learned to circumvent the obstacle but 

has been programmed to behave in a fixed way (turn left when nearing the obstacle). There is 

no change in the robot’s behavior (i.e., from the very start, the robot turns left in proximity of 

the obstacle) so it does not make sense to say that the robot has learned to overcome the 

obstacle. Likewise, in living organisms, there are some behaviors that are present from birth 

and that could be seen as “programmed” by evolution (e.g., the grip reflex in babies). In these 

cases, one would say that evolution functioned as a programmer for those behaviors.  
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Second, some phenomena do involve changes in state transitions but do not qualify as 

instances of learning because the changes in state transitions are unlikely to be changes in 

behavior towards a specific stimulus. Consider the effects of damaging a system. In line with 

what we noted at the start of this section, a change in behavior towards a stimulus implies that 

the impact of that stimulus on the state of a system has changed from Time 1 to Time 2. If, 

however, the system is damaged between Time 1 and Time 2, then a comparison of the state 

transitions at those two points in time no longer informs us about changes in the impact of the 

stimulus. This is because the damage inflicted on the system is an alternative cause of the 

change in state transitions. Imagine a humanoid robot that moves forward, bumps into an 

obstacle, then moves backward, moves forward again, bumps into the obstacle again, and so 

on. After many repetitions of these events, the robot suddenly stops moving forward before it 

reaches the obstacle. One analysis of these events is that the robot has learned: the way in 

which the robot behaves towards the obstacle has changed (i.e., initially, the presence of the 

obstacle has no impact on the robot; eventually, the presence of the robot causes it to stop 

moving forward) because of a regularity in the environment (e.g., moving forward when 

nearing the obstacle results in bumping against the obstacle). Another possible analysis, 

however, is that the robot eventually stops moving forward because it has become damaged in 

such a way that it is no longer capable of moving forward. In this case, the fact that the robot 

eventually stops rather than continues to move forward is not due to a change in the impact of 

the obstacle on the robot (i.e., the change in state transition would have occurred even if the 

robot remained irresponsive to the obstacle) but simply to the damage inflicted on the robot. 

Hence, it does not make sense to say that the way in which the robot responds to the obstacle 

has changed, which implies that it also does not make sense to say that the robot has learned. 

Note that this reasoning applies also to temporary damage such as a temporary depletion of 

energy (e.g., fatigue, depleted batteries). Also in this case, changes in state transition do not 
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inform us about changes in the impact of a specific stimulus on the state of a system. Also in 

this case, the system does not change its behavior towards a specific stimulus but merely 

becomes incapable of responding to stimuli, be it only for a limited period in time (e.g., until 

the batteries are replenished).  

Third, some changes in state transitions do qualify as changes in behavior towards a 

specific stimulus but do not qualify as learning because they are not due to regularities in the 

environment. One example might be the disappearance of the grasp reflex in babies (see De 

Houwer & Hughes, 2020, p. 5). During the first months of their lives, babies will close their 

hand when an object touches the palm of the hand, thereby grasping the object (e.g., a finger). 

This behavior disappears after 5 or 6 months. Hence, there is a change in behavior: the same 

stimulus (e.g., a finger touching the palm of the hand) leads to a different transition in the 

state of the baby at birth (i.e., from open hand to closed hand) than when the baby is 6 months 

old (i.e., the hand remains open). Whether this change in behavior qualifies as an instance of 

learning depends on its causes. If, for instance, it occurs only if the baby experiences a certain 

regularity in its environment (e.g., repeated stimulation of the hand), then the change in 

responding to the stimulation of the hand would qualify as an instance of learning (more 

specifically, habituation). If, however, it occurs independently of regularities in the 

environment of the baby, then it would not qualify as an instance of learning according to the 

(extended) functional definition of learning (also see De Houwer & Hughes, 2020, p. 5). For 

instance, it might be due to maturation, that is, to the spontaneous development of the central 

nervous system. In this case, one could say that not only the grasp reflex but also the 

disappearance of the grasp reflex has been programmed by evolution. An analog of this in 

robots would be that during manufacturing, the neural net of the robot has been programmed 

to circumvent an obstacle but also to stop doing so after a certain period of time.  
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Part IV: Limitations 

Difficulties in Establishing that Learning has Taken Place 

 As we previously noted, the application of the extended functional definition of 

learning requires causal assumptions. At the conceptual level, this has the advantage that clear 

distinctions can be made between learning and other phenomena. At the empirical level, 

however, it is difficult to verify that learning has occurred simply because causality cannot be 

observed directly but can only be inferred. This is a limitation of all functional definitions 

(also see De Houwer et al., 2013), including the extended functional definition of learning. 

Fortunately, the elements that are causally related in the extended functional definition (i.e., 

the state of a system, state transitions, changes in state transitions, stimuli, and regularities) 

can often be observed or manipulated directly by the researcher who analyses the system. To 

verify causal assumptions, one can thus manipulate the presence and nature of stimuli and 

regularities and observe whether this results in transitions in states and changes in state 

transitions. Given appropriate controls, this allows one to infer instances of behavior, changes 

in behavior, and learning. One should be aware that without such experimental evidence, 

statements about behavior, changes in behavior, and learning always remain hypotheses. Also, 

whereas the extended functional definition provides conceptual tools that can facilitate 

debates about learning in various systems, using the definition by no means guarantees that 

different researchers will always agree about whether learning has occurred in a particular 

system. 

 Although this is a significant limitation of the extended function definition of learning, 

it is important to note that also other definitions of learning are difficult to verify. For 

instance, as Barron et al. (2015) noted, many definitions of learning refer to the storage of 

information. These definitions have the downside that (the storage of) information cannot be 
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observed directly given the nonphysical nature of information (e.g., Wiener, 1961). One could 

hope to find observable proxies of the storage of information but this requires (1) the 

assumption that there is a one-to-one correspondence between an observable proxy and the 

storage of information (i.e. that the proxy is influenced by and only by the storage of 

information), (2) assumptions about which events carry information and which information 

carried by those events is stored, (3) assumptions about when and how information that is 

stored influences observable behavior. Hence, arguably such definitions require even more 

causal assumptions that are even more difficult to verify.  

 Despite acknowledging this downside of definitions of learning that refer to the 

storage of information, Barron et al. (2015) still preferred these definitions to functional 

definitions in terms of changes in behavior because, in their opinion, functional definitions 

perform more poorly in terms of delineating learning from other phenomena. As we argued 

above, this criticism does not apply to the extended functional definition of learning (see the 

section on clarifying the boundaries of behavior and learning). Moreover, as we argued 

throughout the paper, the extended functional definition of learning can be used to study 

learning in different systems. Finally, because it allows for intersystem analyses, it allows 

researchers to relate the behavior and learning of multiple systems. These intersystem 

analyses have the unique advantage that they deploy the same concepts of learning and 

behavior within each of the systems that are related. 

 In sum, although the extended functional definition has the downside that it is difficult 

to verify that learning has occurred, arguably other definitions are more problematic in this 

and other respects.  

Deviations from Everyday Language 
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 Together with other definitions that define learning in terms of changes in behavior, 

the extended functional definition of learning deviates from how the term “learning” is 

typically used in everyday language. As noted earlier, for many lay people and scientists 

alike, learning is some kind of mechanism for storing knowledge. From this perspective, 

learning is not a subclass of changes in behavior (e.g., those changes that are due to 

regularities in the environment) but a mechanistic explanation for changes in behavior (e.g., 

the formation of informational representations that can determine behavior). Many concepts 

in science, however, are used in ways that deviate from their everyday use (e.g., gravity as a 

curvature in spacetime rather than an invisible force). In many cases (as in the case of 

gravity), scientific progress depended on letting go of the everyday meaning of concepts in 

science. Time will tell whether the extended functional definition will foster scientific 

progress. For now, it is important to note that this is its only aim. We do not want to claim 

that the extended functional definition is the “true” definition of learning. We only claim that 

adopting it can have advantages for the study of learning in various scientific disciplines. 

 Readers for whom a non-mechanistic, functional definition of learning sits 

uncomfortable could opt to use the term “learned behavior” when referring to learning as a 

phenomenon and maintain the term “learning” for referring to the mechanisms that mediate 

learned behavior. Our extended functional definition could then be used as a definition of 

learned behavior, which would keep intact all the benefits of using the extended functional 

definition across different scientific disciplines. Having said this, we believe that such a broad 

conceptualization of “learning” would have little added value. Because it is likely that 

learning mechanisms vary widely within and across systems, a broad mechanistic 

conceptualization of “learning” would imply little more than the idea that learned behavior 

must be due to some kind of mechanism. An alternative would be to restrict learning to only a 

subset of mechanisms that can produce learned behavior but we fear that this will result in 
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unproductive debates about what are the “true” learning mechanisms. Also, because it is by 

definition at least as difficult to establish the presence of a mechanism that produces learned 

behavior than it is to establish the presence of learned behavior, we fear that restricting 

learning to a subset of mechanisms would hamper the study of learning. Hence, we believe 

that scientific progress is served best by using the term “learning” in a non-mechanistic sense 

as is the case with the extended functional definition of learning that we put forward in this 

paper.  

 We want to avoid ontological debates not only about the nature of learning but also 

about the nature of systems, states, and behavior. Using our definitions, one might well 

construct analyses that do not sit well with pre-scientific intuitions. For instance, some might 

have difficulties with the idea that inanimate objects like rocks and planets might behave. 

Although we hope that our definitions lead to interesting debates about the nature of systems, 

states, behavior, and learning, we do not wish to become trapped in such ontological debates. 

Our main hope and ambition is that the definitions put forward in this paper will help 

scientists achieve their scientific goals.   

Conclusion 

 Definitions are tools at the service of better science. Just as it is good to reflect about 

the utility of other tools, it can be good to reflect on the utility of definitions (Machado & 

Silva, 2007). In this paper, we introduced and debated a new definition of learning that, in our 

opinion, has high utility because it is at the same time precise and broadly applicable. We 

hope that, because of these features, the extended functional definition of learning will 

facilitate communication between researchers from various scientific disciplines and stimulate 

new research on learning both within and across disciplines.   
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